Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.26.355107

ABSTRACT

SARS-CoV-2-neutralizing antibodies are promising therapeutics for COVID-19. However, little is known about the mechanisms of action of these antibodies or their effective dosing windows. We report the discovery and development of SC31, a potent SARS-CoV-2 neutralizing IgG1 antibody, originally isolated from a convalescent patient at day 27 after the onset of symptoms. Neutralization occurs via a binding epitope that maps within the ACE2 interface of the SARS-CoV-2 Spike protein, conserved across all common circulating SARS-CoV-2 mutants. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, SC31 demonstrated potent survival benefit by dramatically reducing viral load concomitant with attenuated pro-inflammatory responses linked to severe systemic disease, such as IL-6. Comparison with a Fc-null LALA variant of SC31 demonstrated that optimal therapeutic efficacy of SC31 requires intact Fc-mediated effector functions that can further induce an IFN{gamma}-driven anti-viral immune response. Dose-dependent efficacy for SC31 was observed down to 5mg/kg when dosed before the activation of lung inflammatory responses. Importantly, despite Fc{gamma}R binding, no evidence of antibody dependent enhancement was observed with the Fc-competent SC31 even at sub-therapeutic doses. Therapeutic efficacy was confirmed in SARS-CoV-2-infected hamsters, where SC31 again significantly reduced viral load, decreased lung lesions and inhibited progression to severe disease manifestations. This study underlines the potential for significant COVID-19 patient benefit for the SC31 antibody that justifies rapid advancement to the clinic, as well as highlighting the importance of appropriate mechanistic and functional studies during development. One Sentence SummaryAnti-SARS-CoV-2 IgG1 antibody SC31 controls infection in vivo by blocking SP:ACE2 binding and triggering a Fc-mediated anti-viral response.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.04.20088104

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) has led to the rapid initiation of urgently needed clinical trials of repurposed drug combinations and monotherapies. These regimens were primarily relying on mechanism-of-action based selection of drugs, many of which have yielded positive in vitro but largely negative clinical outcomes. To overcome this challenge, we report the use of IDentif.AI, a platform that rapidly optimizes infectious disease (ID) combination therapy design using artificial intelligence (AI). In this study, IDentif.AI was implemented on a 12-drug candidate therapy search set representing over 530,000 possible drug combinations. IDentif.AI demonstrated that the optimal combination therapy against SARS-CoV-2 was comprised of remdesivir, ritonavir, and lopinavir, which mediated a 6.5-fold improvement in efficacy over remdesivir alone. Additionally, IDentif.AI showed hydroxychloroquine and azithromycin to be relatively ineffective. The identification of a clinically actionable optimal drug combination was completed within two weeks, with a 3-order of magnitude reduction in the number of tests typically needed. IDentif.AI analysis was also able to independently confirm clinical trial outcomes to date without requiring any data from these trials. The robustness of the IDentif.AI platform suggests that it may be applicable towards rapid development of optimal drug regimens to address current and future outbreaks.


Subject(s)
COVID-19 , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL